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Abstract

A space-time permeated by the self-gravitating perfect fluid with infinite electrical con-
ductivity and constant magnetic permeability (perfect magnetofluid) is investigated. For
a C space defined as the space in which the divergence of conformal curvature vanishes,
it is proved that the rotation explicitly depends on the magnetic field. In a J space charac-
terized by the vanishing of the divergence of Petrov space-matter tensor, the invariance
of the energy density, the isotropic pressure, and the magnitude of the magnetic field
along the divergence-free magnetic lines is established. 1t is found that if the stress-energy
tensor of the perfect magnetofiuid is a Killing tensor, the energy density, the isotropic
pressure, and the magnitude of the magnetic field are constant. Moreover it is shown that
the stream lines are expansion-free and the magnetic lines are divergence-free. It is proved
that the complexion of the field of the perfect magnetofluid remains invariant along the
magnetic lines if and only if these lines are normal to the lines of vorticity.

1. Introduction

Field equations for thermodynamical perfect fluid with infinite electrical
conductivity and constant magnetic permeability (we call such a fluid a perfect
magnetofluid) were announced by Lichnerowicz (1967). He had established
the existence and uniqueness of their solutions. His field equations were used
by Ozsvath (1967) to obtain two families of Lichnerowicz universes with
geodesic flow and shear-free fluid. The absolute derivative of the nonmagnetic
proper energy density and that of the magnetic field were used by Yodzis
(1971) to study the effect of the magnetic field on gravitational collapse and
the orientation of the magnetic field in intergalactic space and pulsars. On
assuming the variable magnetic permeability, Date (1972) had shown explicit
dependence of entropy generation on the magnetic field. Date (1973a, b) and
Bray (1971, 19722, b) have obtained exact solutions of the Lichnerowicz field
equations. Definite material schemes and P spaces for perfect magnetofluid
were investigated by Shaha (1974). Recently, Date (1976) studied the gravi-
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tational field in perfect magnetofluid by finding Maxwell-like equations for
the gravitational field in the magnetofluid and the expressions for the refractive
index and the ray shear of a null gravitational fieid. A set of necessary and suf-
ficient conditions is obtained by Asgekar and Date (1976) in the case of the prefect
magnetofluid admitting “Einstein collineation” with respect to the preferred
directions.

Geometry of the space-time permeated by the magnetofluid is a four-
dimensional Riemannian manifold V4 with the metric g5, and four-velocity
u”. The signature of the metric is (—, —, — , +). Latin indices run from 1 to 4.
The semicolon indicates covariant differentiation and comma indicates partial
differentiation. Symmetrization and antisymmetrization are denoted by round
brackets and square brackets around the suffixes, respectively. Units are such
that the gravitational constant and the velocity of light are one.

The covariant derivative of »* can be decomposed as

1 N
Ugip = 30Dap t Ul + Ogp T wyp (LD

where 8 = u%, is the expansion parameter, 4% = u’fbub is the four-acceleration,
Ogp = U(aspy ~ “iakp) ¥ 10p,, is the shear tensor, Wap = Ulasp] — UlgUp) i

the rotation tensor, and Py, = g4 — Uy Uy is the three-space projection operator.
The two-space projection operator is qgp = 84 — Ugity + H Hy, where H? is a
spacelike unit vector.

The concept of C space had been introduced by Szekeres (1964) as the
space-time in which the divergence of the Weyl tensor C,p.y vanishes. The
expression for the Weyl tensor Cpp.q in terms of the Riemann curvature tensor
Rgpeq and the Ricci tensor Ry, = RS, is (Ellis, 1971)

Capea = Ravca — LajaRe}p — 8bicRaja T 3REu[alelp (1.2)
The well-known Bianchi identities Ryp(cq;e) imply (Szekeres, 1964)

Cgbc;d =Jabe =Rc[a;b] - %)gc[aR,b] (1.3)
Thus a space-time is a C space if
Jabe =Rifasp] — %gc[aR,b] =0 (1.4)

A J space is characterized by the equation
Rc[a;b] =0 (1.5)

Consequently R , = 0, and J,;, = 0. Thus, every J space is a C space.
A second-order symmetric tensor Sy, is a Killing tensor if it satisfies the
relation (Hauser and Malhiot, 1973)

S(ab:c) =0 (1.6)
The three-space projection operator p,,, is a Killing tensor if

3p(ab;c) T Ugli(biey — UpUase) — U Uy p) = 0 (1.7)
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The equations p(ab;c)u"ub =0 and pgp;08*° = 0 yield
u, =0, 6=0, Oap =0 (1.8)
The gradient of the complexion « has been expressed as (Singh et al., 1965)
- nz?Cng;cRde -
R S (1.9)
RinR

For the Einstein space that is characterized by.R;, = Agyp. equation (1.9)
gives

,a

a,=0

¥

Thus, for the Einstein space, the gradient of the complexion is zero. For
J space, defined by the equation (1.5), we observe that « , = 0. Thus for the
J space also the gradient of the complexion is zero.

2. Field Equations and Differential Identities

In the general theory of relativity the field equations for the thermo-
dynamical perfect fluid with constant magnetic permeability and infinite
electric conductivity are given by (Lichnerowicz, 1967) the Einstein equations

Rap = 3Rgap = —Tap (2.1)
and the Maxwell equations
(©°h? — ubh®),, =0 (2.2;
where
Tap = (0 +p + uhYuguey, — (p + 3uh®)gap — whghy, (2.3)

Here p is the matter energy density, p is the isotropic pressure, u is the magnetic
permeability, u® is the four-velocity vector, and A is the magnetic field vector
satisfying the relations

uh* =0,  hh=—h?
The equations connecting thermodynamical variables are
p=po(l te)
(2.4)
TdS =de + pd(1 [pg)

where pg is the proper matter density, € is the internal energy density, 7'is the
rest temperature, and S is the specific entropy.

The local energy balance equation 7% = 0 produces the equations of the
space-time trajectories of the magnetofluid particles in the form

(ptp+ #hz);b“aab t(p+tp+ #hz)(i‘a +0u,)—(p+ %th),bﬁab
- Il(hahb);b =0 (2.5
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Contractions of the Maxwell equations (2.2) yield

B, ~ hyu®u® = 0 (2.6)

B, + iR, = 0 2.7

(wap + Ogp)h? + hf’bua —20h, —hypu® =0 (2.8}
oaph®h” +36h% + $hu’ = 0 (2.9)

Using the Maxwell equations (2.2) in the time component of equation (2.5)
we obtain the equation of continuity

pt(e+tp)o=0 (2.10)
The space component of (2.5) is given by

(p+p+uh®i — (p + 3uh®) pp™ — ph°h®)pp” =0 (2.11)
On using equations (2.4), equation (2.10) reduces to
x(pou® )y, + poTS u* =0 (2.12)

where x = 1 + €+ p/pg.

Consequences of the equations (2.6)-(2.9) the equations of motion (2.10)
and (2.11), and the heat transfer equation (2.12) have been studied by Date
(1976).

The equation T% h, = 0 with the Maxwell equations (2.2) yields

(o +plih, =p,aha (2.13)
Therefore, we have
Wh,=0eph*=0 as{p+p)#0 (2.14)

Thus for the perfect magnetofluid, the isotropic pressure conserves along the
magnetic field lines if and only if the four-acceleration is orthogonal to the
magnetic field vector.

3. C-Space and J-Space for the Perfect Magnetofluid

It has been proved by Szekeres (1964) that the perfect fluid is a C space if
and only if the stream lines are irrotational and shear-free with vanishing spatial
density gradient. The defining expression (1.4) for the perfect magnetofluid
supplies

A“a;[bac] + Augu [e;b] +A,[buc]uﬁ + (%p + %ﬁhz),{cgb}a - ﬂha;[bhc}
~ Mhghiepy =0 3.1
where A =p+p+ uhg.
Theorem 3.1. In C space for the perfect magnetofluid, rotation is
only due to the magnetic field.
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Proof. Contraction of equation (3.1) with #? yields
Aucp) + A [pite) +(3p + 3uh) oty — Ry gphey =0 (3.2)
Further contracting equation (3.2) with p%p.°, we get
Awge = h(tchigle} — e ahey)- (3:3)
Thus
B =0 wg =0 (3.4)

and the proof of the theorem is complete.
Remark 1. C space for the perfect magnetofluid implies

(0 + 3uh™) ;" = 0 (3-5)

Remark 2. The perfect magnetofluid with uniform magnetic field is irro-
tational {cf (3.3)].

Theorem 3.2. In J space for the perfect magnetofluid with a condition
ptp# ph?, the magnitude of the magnetic field is conserved along
the expansion-free flow.

Proof. For the perfect magnetofluid, equation (3.5) gives
A,[cub]ua‘*'yAua;[cub] +Auau[b;c] +B,[bgc]a + ﬂha;[bhc] + Phah[c;b] =0

(3.6)

where B = p + $uh?. From equation (3.6) we get
(0 = 3p)u’ =0 (3.7
h2(p — $uh?),u” — (o + P)ug,sh®h? = 0 (3.8)

Using equation of continuity (2.10) and equations (3.7) and (3.8) we obtain
for8=0

$uhhZu® + (o + Plug,ph®h® = 0
i.e.,
(p+p — uh>h i’ =0 (3.9)
Thus h ,u® =0 when p + p # yh?, and the proof of the theorem is complete.

Theorem 3.3. In J-space for the perfect magnetofluid, the energy
density, the isotropic pressure, and the magnitude of the magnetic
field vector is invariant along the divergence-free magnetic lines.

Proof. From equation (3.6), we find
(P + %#h2),aha —(p +p)1.4a =0 (3~10)

and

(p —3p) A =0 (3.11)
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Now, for the divergence-free magnetic field (i.e., 2% = 0), equations (2.7),
{2.14), (3.10), and (3.11) yield

pah =ph*=hh"=0 (3.12)

Hence the proof of the theorem is complete.

4. Killing Tensor of Second Order and the Perfect Magnetofluid

We investigate the Killing tensor of second order in light of the perfect
magnetofluid.

Theorem 4. 1. If the three-space operator p,; in the space-time per-
meated by the perfect magnetofluid is a Killing tensor then the
energy density remains invariant along the flow vector.

Proof. The conditions (1.6) for p,, to be a Killing tensor produce

3D(abie) = —Uall(bic) — UbU(ase) — Ucl(asp) =0 (4.1)
since g5, 18 redundant. From equation (4.1) we get
=0 (4.2)
On using the equation of continuity (2.10) and equation (4.2) we have
p=0

Thus the proof of the theorem is complete.
Corollary 4.1. Equation (4.1) yields
8 =0, u, =0, Oz =0 4.3)
Thus, if the three-space projection operator p,, is a Killing tensor, the flow
is Killing.

Corollary 4.2. For the perfect magnetofluid with Killing three-space
operator p,;, | the magnetic field is divergence-free and the isotropic
pressure conserves along the magnetic field vector.

Proof. By condition ¢ = 0, equations (2.7) and (2.13) produce
hé,=0 and ph°=0
These equations justify the statement.

Theorem 4.2. In the shear-free perfect magnetofluid two-space
operator qup = gap — Ugltp + H,Hy where H* = b /h is Killing if the
stream lines are expansion-free.

Proof, With the conditions (1.6) for g, to be Killing, we have

HaH(b;c) +HbH(c;a) +HcH(a;b) = Ugt(picy — Upl(c;a) — Ucll(a;p) ™ 0
4.4)
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Contraction of equation (4.4) yields
Hy  H? + H.HY — i, — Ou, =0 4.5)
The time component of equation (4.5) is
Uy H®H +6 =0
ie.,
oHPH? +36 =0 (4.6)
For shear-free perfect magnetofluid, equation (4.6) reduces to
6=0
Hence the proof of the theorem is complete.

Theorem 4.3 If the symmetric stress-energy tensor of the perfect
magnetofluid is a Killing tensor of the second order then the pressure,
the energy density, and the magnitude of the magnetic field are
constant.

Proof. In case of the symmetric stress-energy tensor (2.3}, the condition
T(ab ey = 0 yields

A gty Y A puc, tA ity — B ooy — B p8ed — B a8y 24 {uau(b;c)
T Upt(g,) t ucu(a;b)] -~ 2u[hah(b;c) thph(oiayt hch(a;b)] ={ 4.7

By various contractions of equation (4.7) we obtain

(p—3p).=0 (4.8)
(o + 2p + $uh®) 1% =0 (4.9)
(p + $uh?) qu® =0 (4.10)
Aug +3(p +3uh?) 4 =0 4.11)
B,k +3h2h* =0 (4.12)
From equations (4.8) 10 (4.12), we find that
04=Pg=hg=0 (4.13)

Thus the proof of the theorem is complete.

Corollary 4.3. If the stress-energy tensor of the perfect magnetofluid
is Killing, then stream-lines are expansion-free and the magnetic lines
are divergence-free.

Proof. By virtus of (4.13) the equation of continuity (2.10) implies
g =0, asptp#0 (4.14)
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while (2.13) yields
u h* =0 (4.15)
Consequently,
h,=0

and the proof of the corollary is complete.

5. Complexion Vector for the Perfect Magnetofluid
The expression (1.9) for the perfect magnetofluid becomes
o = nﬁg(A zu?:‘“d + zﬂAheue;cubhd - ﬂzhzh?chd)
3 p2 + 3p2 + Mhz

Azwa + ngg(Aﬂheue;cubhd — ﬂ2h2h?chd)

5.1
Qg p2 + 3p2 + M.Ahz ( )
Contracting with 4%, equation (5.1) produces
A 2
o ht =m wh® (5.2)

From equation (5.2) we get
a =00 wh*=0 asd’#0

Thus the complexion of the field in a perfect magnetofluid remains invariant

along the magnetic lines if and only if these lines are normal to the vortex line.
Remark. The complexion of the space-time of the perfect magnetofluid

with uniform magnetic field remains invariant along the world-line [c¢f (5.1)].
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