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Abstract  

A space-time permeated by the self-gravitating perfect fluid with infinite electrical con- 
ductivity and constant magnetic permeability (perfect magnetofluid) is investigated. For 
a C space defined as the space in which the divergence of conformal curvature vanishes, 
it is proved that the rotation explicitly depends on the magnetic field. In a J space charac- 
terized by the vanishing of the divergence of Petrov space-matter tensor, the invariance 
of the energy density, the isotropic pressure, and the magnitude of the magnetic field 
along the divergence-free magnetic lines is established. It is found that if the stress-energy 
tensor of the perfect magnetofluid is a Killing tensor, the energy density, the isotropic 
pressure, and the magnitude of the magnetic field are constant. Moreover it is shown that 
the stream lines are expansion-free and the magnetic lines are divergence-free. It is proved 
that the complexion of the field of the perfect magnetofluid remains invariant along the 
magnetic lines if and only if these lines axe normal to the lines of vorticity. 

1. Introduction 

Field equations for thermodynamical perfect fluid with infinite electrical 
conductivity and constant magnetic permeability (we call such a fluid a perfect 
magnetofluid) were announced by Lichnerowicz (1967). He had established 
the existence and uniqueness of their solutions. His field equations were used 
by Ozsvath (1967) to obtain two families of Lichnerowicz universes with 
geodesic flow and shear-free fluid. The absolute derivative of the nonmagnetic 
proper energy density and that of the magnetic field were used by Yodzis 
(1971) to study the effect of the magnetic field on gravitational collapse and 
the orientation of the magnetic field in intergalactic space and pulsars. On 
assuming the variable magnetic permeability, Date (1972) had shown explicit 
dependence of entropy generation on the magnetic field. Date (1973a, b) and 
Bray (197 i,  1972a, b) have obtained exact solutions o f the Lichnerowicz field 
equations. Definite material schemes and P spaces for perfect magnetoflnid 
were investigated by Shaha (1974). Recently, Date (1976) studied the gravi- 
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tationaI field in perfect magnetofluid by finding Maxwell-like equations for 
the gravitational field in the magnetofluid and the expressions for the refractive 
index and the ray shear of a null gravitational field. A set of necessary and suf- 
ficient conditions is obtained by Asgekar and Date (1976) in the case of the prefect 
magnetofluid admitting "Einstein collineation" with respect to the preferred 
directions. 

Geometry of the space-time permeated by the magnetofiuid is a four- 
dimensional Riemannian manifold V 4 with the metric gab and four-velocity 
u a. The signature of the metric is ( - ,  , , +). Latin indices run from 1 to 4. 
The semicolon indicates covariant differentiation and comma indicates partial 
differentiation. Symmetrization and antisymmetrization are denoted by round 
brackets and square brackets around the suffixes, respectively. Units are such 
that the gravitational constant and the velocity of light are one. 

The covariant derivative of u a can be decomposed as 

Ua; b = lOPa b + gtaU b + Oab + COat ) (1.1) 

where 0 = uaa is the expansion parameter, h a = Ua.b ua is the four-acceleration, 
o = u  ' - t i u  + - t  O s t  te ' " " ab (a ;b)  (a b) 3 Pab 1 he shear nsor, (.dab = U [ a ; b  ] -- U[aUb] lS 

the rotation tensor, and Pab = gab -- UaUb is the three-space projection operator. 
The two-space projection operator is qab = gab -- UaUb + H a H b ,  where H a is a 
spacelike unit vector. 

The concept of C space had been introduced by Szekeres (1964) as the 
space-time in which the divergence of the Weyl tensor Cabca vanishes. The 
expression for the Weyl tensor Caocd in terms of the Riemann curvature tensor 
Rabcd and the Ricci t e n s o r R a b  = Racbe iS (Ellis, 1971) 

Cabcd = Rabca -- ga[dRclb  -- gb i eRd la  + ½Rga[dgc] b (1.2) 

The well-known Bianchi identities Rab[cd;el imply (Szekeres, 1964) 

1 ( 1 . 3 )  Cdabc;d = Jabc  = R c [ a ; b l  - -  -6gc[aR,b l  

Thus a space-time is a C space if 

Jabe = Rc[a;b l -- "~gclaR,b ] = 0 (t .4) 

A J space is characterized by the equation 

Rc[a;t~ 1 = 0 (1.5) 

Consequently R t, = 0, and Jat,c = 0. Thus, every J space is a C space. 
A second-order symmetric tensor Sat, is a Killing tensor if it satisfies the 

relation (Hauser and Malhiot, 1973) 

S(ab:e) = 0 (1.6) 

The three-space projection operator Pat, is a Killing tensor if 

3P(ab;c )  = UaU(t,;c) - -  UbU(a;c)  -- UcU(a;b ) = 0 (1.7) 
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The equations P(ab ;c) uaub = 0 and P(ab;c)g aa = 0 yield 

h a = 0, 0 = 0, %~ = 0 (1.8) 

The gradient of the complexion u has been expressed as (Singh et al., 1965) 
_ b c d n  e n 

_ "tla 1"; b ;el~de 
~,a (1.9) 

R l r n  R I m  

For the Einstein space that is characterized by Rab = Xgab, equation (1.9) 
gives 

~,a = 0 

Thus, for the Einstein space, the gradient of the complexion is zero. For 
J space, defined by the equation (1.5), we observe that Oqa = 0. Thus for the 
J space also the gradient of the complexion is zero. 

2. Fgeld Equations and Differential Identit ies 

In the general theory of relativity the field equations for the thermo- 
dynamical perfect fluid with constant magnetic permeability and infinite 
electric conductivity are given by (Lichnerowicz, 1967) the Einstein equations 

and the Maxwell equations 

where 

Rab - ½Rgaa = -- Tab (2.1) 

(uah b - ubha); b = 0 (2.2) 

Tab = (P + P + Ph~)UaUb -- (P + ½PhZ)gab -- phaha (2.3) 

Here p is the matter energy density, p is the isotropic pressure, p is the magnetic 
permeability, u a is the four-velocity vector, and h a is the magnetic field vector 
satisfying the relations 

Ua ha = O, ha ha = - h  2 

The equations connecting thermodynamical variables are 

p = p0 ( l  + e) 

(2.4) 

TdS = de + pd(1 /Po) 

where Po is the proper matter density, e is the internal energy density, Tis the 
rest temperature, and S is the specific entropy. 

The local energy balance equation T;~ = 0 produces the equations of the 
space-time trajectories of the magnetofiuid particles in the form 

(P + P + ph2);bUa ub + (p + p + ph2)(t)a + Oua) - (19 + 121~h2),b6a b 

- p(haha);b = 0 (2.5) 
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Contractions of the Maxwell equations (2.2) yield 

h a - ha;buau b = 0 (2.6) ;a 

h a + haha = 0 (2.7) ;a 

(COab + %b)h b + hb;bUa -- ~Oha - ha;bu ° = 0 (2.8) 

oabhah b + 20h2 + !h2 ,  a = 0 (2.9) 2 ,a ~ 

Using the Maxwell equations (2.2) in the time component of equation (2.5) 
we obtain the equation of continuity 

h + (P +p)O = 0 (2.10) 

The space component of (2.5) is given by 

1 ,,h2"~ ~ab  ( P + P + P h 2 ) h a - ( P + ~ m "  ,',be -p(hChb) ,bPc a = O  (2.11) 

On using equations (2.4), equation (2.10) reduces to 

X(Poua);a + PoTS,a ua = 0 (2.12) 

where x = 1 + e + P/Po. 
Consequences of the equations (2.6)-(2.9) the equations of motion (2.10) 

and (2.11), and the heat transfer equation (2.12) have been studied by Date 
(1976). 

The equation T;~ b h a = 0 with the Maxwell equations (2.2) yields 

(p + p)haha = p,ah a (2.13) 

Therefore, we have 

•ah a =O~*P,a ha =0  as (p + p ) 4 : 0  (2.14) 

Thus for the perfect magnetofluid, the isotropic pressure conserves along the 
magnetic field lines if and only if the four-acceleration is orthogonal to the 
magnetic field vector. 

3. C-Space and J-Space for  the Perfect Magnetofluid 

It has been proved by Szekeres (1964) that the perfect fluid is a C space if 
and only if the stream lines are irrotational and shear-free with vanishing spatial 
density gradient. The defining expression (1.4) for the perfect magnetofluid 
supplies 

1 2 
Aua;lt, Ucl + Auau[c;t q + A,[bUclUa + (½p + ~l~h ),{cgbla -- I~ha;[bhel 

- Uhah~c,b] = 0 ( 3 . 1 )  

where A = p + p +/lh z. 

Theorem 3.1. In C space for the perfect magnetofluid, rotation is 
only due to the magnetic field. 
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P r o o f  Contraction of equation (3.1) with u a yields 

1 2 AU[c;b] + A,lbUc] + (½P + ~lah ),[cUb] - t2uaha;lbhc] = 0 (3.2) 

Further contracting equation (3.2) with pa~Pe c, we get 

AWde = he(Sch[dUel - Uc; [ dhe] ). (3.3) 

Thus 

h c = 0 ~ a~ae = 0 (3.4) 

and the proof of the theorem is complete. 
R e m a r k  1. C space for the perfect magnetofluid implies 

CO + ~41J.h2),a ha = 0 (3.5) 

R e m a r k  2. The perfect magnetofluid with uniform magnetic field is irro- 
tational [cf (3.3)]. 

Theorem 3.2. In J space for the perfect magnetofluid with a condition 
0 + p 4:/.th 2 , the magnitude of the magnetic field is conserved along 
the expansion-free flow. 

P r o o f  For the perfect magnetofluid, equation (3.5) gives 

A,[eUb]Ua,+'AUa;[eUb] + AUaU[b;c ] + B,[bgcl a + laha;[bhc] + Phah[c;b ] = 0 

(3.6) 

where B = p + ½/~h 2. From equation (3.6) we get 

(p - 3p);au a = 0 (3.7) 

h2(p 1--2 ,  a 
- -~lJ.n );a u - (,o + p)Ua;bhah b = 0 (3.8) 

Using equation of continuity (2.1 O) and equations (3.7) and (3.8) we obtain 
for0 = 0  

1 - - 2 ~ 2  a ~ld.n n,aU + CO + P)Ua;bhah b = 0 

i . e . ,  

(p + p - l.th2)h,a ua = 0 (3.9) 

Thus h,au a = 0 when t9 + p 4: tab 2, and the proof of the theorem is complete. 

Theorem 3.3. In J-space for the perfect magnetofluid, the energy 
density, the isotropic pressure, and the magnitude of the magnetic 
field vector is invariant along the divergence-free magnetic lines. 

P r o o f  From equation (3.6), we find 

CO 1 2 a + -~lah ),ah - CO + p)itaha = 0 (3.10) 

and 

CO - 3p),a ha = 0 (3.11) 
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Now, for the divergence-free magnetic field (i.e., ha.,a = 0), equations (2.7), 
(2.14), (3.10), and (3.1 t) yield 

p,ah a = p,ah a = h ah a = 0 (3.12) 

Hence the proof of the theorem is complete. 

4. Kill ing Tensor o f  Second  Order and the Per fec t  Magneto f luM 

We investigate the Killing tensor of second order in light of the perfect 
magnetofluid. 

Theorem 4.1. If the three-space operator Pab in the space-time per- 
meated by the perfect magnetofluid is a Killing tensor then the 
energy density remains invariant along the flow vector, 

P r o o f  The conditions (1.6) for Pab to be a Killing tensor produce 

3p(ab ; c )  = - -  IAaU(b ; c )  - -  tdbbl(a ; e )  - -  Ucld(a ; b )  = 0 (4.1) 

since gab is redundant. From equation (4.1) we get 

0 = 0 (4.2) 

On using the equation of continuity (2.10) and equation (4.2) we have 

~=0 

Thus the proof of the theorem is complete. 

Corollary 4.1. Equation (4. I) yields 

0 = O, h a = O, Oab = 0 (4.3) 

Thus, if the three-space projection operator Pab is a Killing tensor, the flow 
is Killing. 

Corollary 4 . Z  For the perfect magnetofluid with Killing three-space 
operator Pat>, the magnetic field is divergence-free and the isotropic 
pressure conserves along the magnetic field vector. 

P r o o f  By condition fia = 0, equations (2.7) and (2.13) produce 

h a = 0 and a = 0 ;a P ,a h 

These equations justify the statement. 

Theorem 4.2. In the shear-free perfect magnetofluid two-space 
operator qaa = gab -- UaU~ + ItaHb where H a = ha/h is Killing if the 
stream lines are expansion-free. 

Proof, With the conditions (1.6) for qab to be Killing, we have 

HaH(b;c) + HbH(c;a) + HcH(a;b) - uau(b;c) - uhu(c;a) - ucU(a;b) = 0 
(4.4) 
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Contraction of equation (4.4) yields 

+ o/G - - 0 . o  = 0 ( 4 . 5 )  

The time component of equation (4.5) is 

Ua;t~HaH b + 0 = 0 

i.e., 

%bHaH b + -~0 = 0 (4.6) 

For shear-free perfect magnetofluid, equation (4.6) reduces to 

0 = 0  

Hence the proof of the theorem is complete. 

Theorem 4.3 If the symmetric stress-energy tensor of the perfect 
magnetofluid is a Killing tensor of the second order then the pressure, 
the energy density, and the magnitude of the magnetic field are 
constant. 

Proof. In case of the symmetric stress-energy tensor (2.3), the condition 
T(ab;c) = 0 yields 

A,euabt  b + A ,bUcU a + A ,aucU a - B , c g a b  - B,  bgca - B agbe + 2A [UaU(b;c ) 

+ Ubl, t(a;c ) + Uctl(a;b)] -- 21a[hah(~;c ) + hbh(c;a ) + hch(a;b)] = 0 (4.7) 

By various contractions of equation (4.7) we obtain 

(p - 3p),c = 0 (4.8) 
1 , , h 2 ~  /,,a (p + 2p + ~m, / , a "  = 0 (4.9) 

(p + ½1_thZ),a ua = 0 (4.10) 

1 1 2 Au a + ~(p + ~gh ),a = 0 (4.1 1) 

B,a ha + ½h2,ah a = 0 (4.12) 

From equations (4.8) to (4.12), we find that 

o,a =P,a = h,a = 0 (4.13) 

Thus the proof of the theorem is complete. 

Corollary 4.3. If the stress-energy tensor of flae perfect magnetofluid 
is Killing, then stream-lines are expansion-free and the magnetic lines 
are divergence-flee. 

Proof. By virtu,: of (4.13) the equation of continuity (2.10) implies 

0 =0,  asp +p 4:0 (4.14) 
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while (2.13) yields 

Consequently, 
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~a ha = 0 

h a = 0  ;a 

and the proof of the corollary is complete. 

(4.15) 

i.e., 

5. Complexion Vector for the Perfect Magnetofluid 

The expression (t .9) for the perfect magnetofluid becomes 
cd 2 b C~,a = ~ab(A U;cUd + 21JAheUe;cUbhd --/22h2h;beh~) 

p2 + 3p2 +/.tAh 2 

cd e b _ A2coa + r~ab(Aph Ue;e u ha Id2h2hb.,chd) 
a,a = p2 + 3p2 +/Mh 2 (5.1) 

Contracting with h a, equation (5.1) produces 
A 2 

°~,a ha p2 + 3p2 + pAh z C°a ha (5.2) 

From equation (5.2) we get 

O~,a ha = 0 ¢~ ~a  ha = 0 as A 2 ~ 0 

Thus the complexion of the field in a perfect magnetofluid remains invariant 
along the magnetic lines if and only if these lines are normal to the vortex line. 

Remark. The complexion of the space-time of the perfect magnetofluid 
with uniform magnetic field remains invariant along the world-line [cf (5.1)]. 
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